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1. Theorems and Lemmas

Theorem 1. Let S le f t and S right be two surfaces in FGle f t and
FGright, respectively, and let L be a line intersecting both sur-
faces at points A ∈ S le f t and B ∈ S right. There exists at least
one point Q0 ∈ L between A and B such that Q0 lies on the mid-
surface between S le f t and S right.

Proof. For any point Q ∈ L, define the shortest distance func-
tions:

Dist(Q, S le f t) = inf
P∈S le f t

∥Q−P∥, Dist(Q, S right) = inf
P∈S right

∥Q−P∥.

(1)
S le f t and S right are closed sets, so their distance functions
Dist(Q, S le f t) and Dist(Q, S right) are continuous over R3, thus
both distance functions are continuous on L. Construct the func-
tion f (Q) = Dist(Q, S le f t) − Dist(Q, S right). At endpoints:

f (A) = Dist(A, S le f t) − Dist(A, S right) = 0 − Dist(A, S right) < 0,
(2)

f (B) = Dist(B, S le f t) − Dist(B, S right) = Dist(B, S right) − 0 > 0,
(3)

The function f (Q) is continuous on the line segment [A, B] ⊂
L. Since f (A) < 0 and f (B) > 0, by the Intermediate Value
Theorem, there exists at least one point Q0 ∈ (A, B) such that:

f (Q0) = 0 =⇒ Dist(Q0, S le f t) = Dist(Q0, S right). (4)

Thus, Q0 lies on the mid-surface.

Lemma 1 (Convex Projection Invariance). Let T be a convex
triangle in M, and let A, B ∈ L be two points on a line segment
such that their closest points on T lie strictly inside T . Then,
for any Q ∈ AB, the closest point PQ ∈ T to Q also lies strictly
inside T .

Proof. By convexity of T and projective continuity, the line seg-
ment PAPB ⊂ T . Parametrize Q = (1 − λ)A + λB and define
PQ = (1− λ)PA + λPB, by convexity, PQ ∈ T , and the distance of
Q to PQ follows:

Distmin(Q,PQ) = Q − PQ = (1 − λ)(A − PA) + λ(B − PB). (5)

Since
A − PA ⊥ T, B − PB ⊥ T, (6)

and the vector Q−PQ is a linear combination, it remains orthog-
onal to the T at PQ, thereby ensuring PQ is the closest point to Q
on T .
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Table 1: The statistical results of efficiency at different sampling points and par-
allelism for different benchmarks (s).

M2 M3 M4 M5 M6

N=8 parallel 0.031 0.355 0.068 0.384 0.644
single-threaded 0.122 0.973 0.220 1.593 2.011

N=16 parallel 0.029 0.252 0.085 0.342 0.589
single-threaded 0.108 0.963 0.251 1.363 1.801

N=32 parallel 0.047 0.321 0.105 0.509 0.798
single-threaded 0.204 1.779 0.368 2.624 3.313

Note: The data in the table represents the results of the Mid-point Extraction
stage. Model 1, being a constant wall thickness model, is not listed in the table.

Theorem 2. Let Mle f t and Mright be triangular meshes generated
by two face groups (FG), and let L be a line segment intersecting
both meshes. Suppose two points A, B ∈ L (between the intersec-
tions of L with M1 and M2) are such that:

1. A and B share the same closest triangle indices Ta ∈ Mle f t
and Tb ∈ Mright.

2. Ta and Tb are convex.

Then, for any point Q ∈ AB, the closest triangle indices of Q to
Mle f t and Mright remain Ta and Tb, respectively.

Proof. For Mle f t, by Lemma 1, if the closest points of A and B
to Ta lie inside of Ta, then the closest points of all points on the
segment AB also lie inside of Ta. If the closest points of A and B
lie on the edge or vertex of Ta, then the closest points of points
on AB may move along the edge or vertex but still belong to Ta.
Therefore, for all points on AB, the index of the closest face to
Mle f t is Ta. Same proof for Mright.

2. Performance of Different Sampling Points

We evaluated the computational efficiency in the mid-point
extraction based on the number of sampling points and the use
of parallel computing, as detailed in Table 1. For all models,
the best efficiency was achieved with 16 sampling points (i.e.,
N = 16) and parallel acceleration (the default setting used in
the algorithm). Notably, we pre-tested the impact of different
thread counts on the algorithm, revealing only a ±2% variation
in efficiency. Thus, we used the default thread count (i.e., the
CPU’s core count). When N = 8, the parallel strategy achieved a
speedup of 2.7X−4.2X, but the overall time was generally longer
than with N = 16. This is primarily due to insufficient sampling
points leading to increased recursion and more iterations in the
binary search. For example, in Model 3, with N = 8, the average
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Figure 1: Examples of different transition scenarios, where the highlighted areas
are transition areas.

recursion count was 1.32, and the average binary search count
was 6.75, compared to 1.12 and 6.03, respectively, with N = 16.
Similarly, with N = 32, the average speedup ranged from 3.5X to
5.5X, demonstrating enhanced parallelism with more sampling
points. However, despite the improved parallel efficiency and
favorable recursion (1.03) and binary search counts (4.94), this
configuration was slower than the N = 16 case across all models.
This is mainly because excessive sampling points reduce com-
putational efficiency, as more points with no impact on the final
result are calculated. An exception in Table 1 is Model 4, which
performed better with N = 8 than N = 16. This is attributed to
the gentle transitions in Model 4’s variable wall thickness (low
curvature variation), allowing fewer sampling points to quickly
identify triangular meshes with the same shortest distance. Ad-
ditionally, the model’s low discretization level, resulting in larger
average triangular mesh areas, made it easier to hit the same
meshes. However, this configuration significantly reduces the
geometric accuracy of the generated mid-surface. Based upon
this, N = 16 was finalized as the default value.

3. Construction of Thin-walled Model Dataset

All models were selected from various datasets using key-
words such as “thin-walled parts,” “sheet metal parts,” and “plas-
tic shells.” We searched databases including the Onshape public
dataset1, GrabCAD Library 2, and the ABC dataset [1], covering
categories such as aerospace, automotive, industrial design, and
machine design. After the initial search, we manually curated
the collected models, resulting in a dataset of 213 representative
models comprising 7894 faces. All models are thin-walled and
include various wall thickness types, transition scenarios, and
face pair combinations.

Further, the models were manually classified and annotated.
To reflect the diversity of the database, the models were di-
vided into four categories based on their corresponding do-
mains: aerospace, automotive, industrial/mechanical design, and
others, with the quantity and proportion of each category pre-
sented in Table 2. Moreover, To illustrate the dataset’s compo-
sition, the count of constant and variable wall thickness models

1https://cad.onshape.com/documents?nodeId=3&resourceType=

filter
2https://grabcad.com/library

Table 2: The statistical data for each domain of the model in the dataset.

Count Percentage

Aerospace 45 21.12%

Automotive 52 24.41%

Industry/Machine Design 75 35.21%

Others 41 19.25%

Total 213 -

Table 3: The statistical data of each face group pair (FGP) type and transition
scenarios in the dataset.

Constant Variable
Wall-thickness Wall-thickness

Count Percentage Count Percentage

1-1 FGPs 38 17.84% 30 14.08%

1-n/n-n FGPs 27 12.68% 118 55.40%

Chamfer/Fillet (-like) 22 10.33% 121 56.81%

Total 65 30.52% 148 69.48%

were recorded, and categorized into 1-1 and 1-n/n-n FGP types,
along with various transition scenarios, such as chamfers(-like),
fillets(-like) structures (see Fig. 1). These statistics highlight the
dataset’s complexity, as shown in Table 3. Moreover, 12 repre-
sentative models and their extracted mid-surfaces were visually
displayed with corresponding model data in Figs. 2-3, showcas-
ing the diversity and complexity of the model dataset across dif-
ferent domains, wall thicknesses, and FGP types, ensuring the
dataset’s validity for evaluation.
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Figure 2: Visual examples of 12 representative models in the dataset. The yellow boxes indicate constant wall-thickness models, and the orange boxes indicate variable
wall-thickness models. The domain, FGP type, and parameter settings for each model are listed. The blue boxes show the default parameter settings of our method.
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Figure 3: Visual examples of 12 representative models in the dataset. The orange boxes indicate variable wall-thickness models. The domain, FGP type, and parameter
settings for each model are listed. The blue boxes show the default parameter settings of our method.
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